A bijective proof of the hook-content formula for super Schur functions and a modified jeu de taquin

نویسنده

  • Christian Krattenthaler
چکیده

A bijective proof of the product formula for the principal specialization of super Schur functions (also called hook Schur functions) is given using the combinatorial description of super Schur functions in terms of certain tableaux due to Berele and Regev. Our bijective proof is based on the Hillman–Grassl algorithm and a modified version of Schützenberger’s jeu de taquin. We then explore the relationship between our modified jeu de taquin and a modified jeu de taquin by Goulden and Greene. We define a common extension and prove an invariance property for it, thus discovering that both modified jeu de taquins are, though different, equivalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Another Involution Principle-Free Bijective Proof of Stanley's Hook-Content Formula

Another bijective proof of Stanley’s hook-content formula for the generating function for semistandard tableaux of a given shape is given that does not involve the involution principle of Garsia and Milne. It is the result of a merge of the modified jeu de taquin idea from the author’s previous bijective proof (“An involution principle-free bijective proof of Stanley’s hook-content formula”, Di...

متن کامل

A Symmetry Theorem on a Modified Jeu De Taquin

For their bijective proof of the hook-length formula for the number of standard tableaux of a fixed shape Novelli, Pak and Stoyanovskii [2] define a modified jeu de taquin which transforms an arbitrary filling of the Ferrers diagram with 1, 2, . . . , n (tabloid) into a standard tableau. Their definition relies on a total order of the cells in the Ferrers diagram induced by a special standard t...

متن کامل

A 'Nice' Bijection for a Content Formula for Skew Semistandard Young Tableaux

Based on Schützenberger’s evacuation and a modification of jeu de taquin, we give a bijective proof of an identity connecting the generating function of reverse semistandard Young tableaux with bounded entries with the generating function of all semistandard Young tableaux. This solves Exercise 7.102 b of Richard Stanley’s book ‘Enumerative Combinatorics 2’.

متن کامل

A direct bijective proof of the hook-length formula

The aim of this paper is to give a bijective proof of the hook-length formula for the enumeration of standard Young tableaux of a given shape. This formula was discovered by Frame, Robinson and Thrall in 1954 [1] and since then it has been the object of much study. Many proofs have been published based on different approaches, but none of them is considered satisfactory. We refer to the paper [...

متن کامل

Symmetry properties of the Novelli-Pak-Stoyanovskii algorithm

The number of standard Young tableaux of a fixed shape is famously given by the hook-length formula due to Frame, Robinson and Thrall. A bijective proof of Novelli, Pak and Stoyanovskii relies on a sorting algorithm akin to jeu-de-taquin which transforms an arbitrary filling of a partition into a standard Young tableau by exchanging adjacent entries. Recently, Krattenthaler and Müller defined t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 3  شماره 

صفحات  -

تاریخ انتشار 1996